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Abstract
We focus on the transformation matrices between the standard Young–
Yamanouchi basis of an irreducible representation for the symmetric group
Sn and the split basis adapted to the direct product subgroups Sn1 × Sn−n1 .
We introduce the concept of subduction graph and show that it conveniently
describes the combinatorial structure of the equation system arisen from the
linear equation method. Thus we can outline an improved algorithm to solve
the subduction problem in symmetric groups by a graph searching process. We
conclude by observing that the general matrix form for multiplicity separations,
resulting from orthonormalization, can be expressed in terms of Sylvester
matrices relative to a suitable inner product in the multiplicity space.

PACS numbers: 02.10.Ox, 02.10.Ud, 02.20.Hj
Mathematics Subject Classification: 05E10, 15A06, 20C30

1. Introduction

Subduction coefficients for symmetric groups were first introduced in 1953 by Elliot et al
[1] to describe the states of a physical system with n identical particles as composed of two
subsystems with n1 and n2 particles respectively (n1 + n2 = n). Later these coefficients
assumed a central role in the so-called Wigner–Racah calculus via Schur–Weyl duality [2–4].
In fact, the subduction coefficients are directly related to the coupling (3j) and recoupling (6j)

coefficients of unitary groups which are often useful for simplifying many-body calculations
in quantum or nuclear physics and chemistry. In particular, the 6j of the unitary groups can
be expressed as sum of products of such coefficients [5, 6].

Since Elliot et al (1953), many techniques have been proposed for calculating the
subduction coefficients, but the investigation is until now incomplete. The main goal to
give explicit and general closed algebraic formulae has not been achieved. Only some special
cases have been solved [7–9]. There are numerical methods [10–12] which are used to
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approach the issue, but no insight into the structure of the transformation coefficients can be
obtained. Another key outstanding problem is to resolve multiplicity separations [13] in a
systematic manner, indicating a consistent choice of the independent phases and free factors.
In [14, 15] a breakthrough was made about this; however, the authors abandon the aim to
obtain an algebraic solution and prefer a combinatorial recipe.

In this paper, we come back to an algebraic approach to the subduction problem in
symmetric groups and we analyse in detail the linear equation method [16], an efficient tool
for deriving algebraic solutions for fixed values of n1 and n2. In section 2 we provide some
background and describe the method, giving the general structure of the resulting equation
system (subduction matrix). In section 3 we introduce the subduction graph and in section 4
we relate it to the subduction matrix. The graph provides a graphic description of a minimal
set of equations which are sufficient to obtain the transformation coefficients. We find the
solution space as an intersection of suitable linear subspaces of R

N ⊗ R
N1N2 , where N,N1

and N2 are the dimensions of the irreducible representations involved in the subduction. In
section 5 we give the general orthonormalized form for the coefficients and discuss the choice
of phases and free factors governing the multiplicity separations. We summarize our results
in section 6.

2. The linear equation method: background

2.1. Standard and split bases

The irreducible representations (irreps) of the symmetric group Sn may be labelled by partitions
[λ] of n, i.e. sequences [λ1, λ2, . . . , λh] of positive integers such that

∑h
i=1 λi = n and λi

are weakly decreasing. A partition [λ] is usually represented by a Ferrers diagram (or Young
diagram) obtained from a left-justified array with λj boxes on the j th row and with the kth
row below the (k − 1)th row. Standard Young tableaux are generated by filling the Ferrers
diagram with the numbers 1, . . . , n in such a way that each number appears exactly once
and the numbers strictly increase along the rows and down the columns. An orthonormal
basis vector of an irrep associated with the partition [λ] may be labelled by a standard Young
tableau. Such a basis corresponds to the Gelfand–Tzetlin chain S1 ⊂ S2 ⊂ · · · ⊂ Sn and is
usually called the standard basis of [λ]. We denote this basis by Sn-basis [9].

An alternative orthonormal basis for [λ] is the split basis, denoted by Sn − Sn1,n2 -basis
[9], with n1 + n2 = n. By definition, such a basis breaks [λ] (which is, in general, a reducible
representation of the direct product subgroup Sn1 × Sn2 ) in a block-diagonal form:

[λ] =
⊕

[λ1],[λ2]

{λ; λ1, λ2}[λ1] ⊗ [λ2], (2.1)

where [λ1] and [λ2] are irreps of Sn1 and Sn2 respectively, and {λ; λ1, λ2}, the Clebsch–Gordan
series, counts the number of times (multiplicity) that the irrep [λ1] ⊗ [λ2] of Sn1 × Sn2 appears
in the decomposition of [λ].

The irreps of the subgroup Sn1 × Sn2 may be labelled by pairs (α, β) of Ferrers diagrams,
with α corresponding to an irrep of Sn1 and β to an irrep of Sn2 . In the same way, each element
of the basis is labelled by pairs of standard Young tableaux.

2.2. Symmetric group action on standard and split bases

The symmetric group Sn of n elements is generated by the n − 1 transpositions gi each
interchanging the elements i and i + 1.
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Given a standard Young tableau m, we define the action gi(m) in the following way: if the
tableau obtained from m interchanging the box with i and the box with i + 1 (keeping the other
elements fixed) is another standard Young tableau m(i), we set gi(m) = m(i); else gi(m) = m.

The gi acts on the standard basis vectors |λ;m〉 of the irrep [λ] as follows [16]:

gi |λ;m〉 =
{

1
di (m)

|λ;m〉 +
√

1 − 1
di (m)2 |λ; gi(m)〉 if gi(m) �= m

|λ;m〉 if gi(m) = m,
(2.2)

where di(m) is the usual axial distance from i to i + 1 in the standard Young tableau m [17].
The explicit action of the generators gi (i �= n1 because gn1 is not a generator of Sn1 ×Sn2 )

on the elements of the Sn − Sn1,n2 -basis directly follows from (2.2). In fact we have

gi |λ1, λ2;m1,m2〉 =
{

(gi |λ1;m1〉) ⊗ |λ2;m2〉 if 1 � i � n1 − 1

|λ1;m1〉 ⊗ (gi |λ2;m2〉) if n1 + 1 � i � n − 1.
(2.3)

Then, from (2.2) applied to the standard basis vectors of [λ1] and [λ2] respectively, we have
the action of the generators of Sn1 × Sn2 on the basis vectors |λ1;m1〉 ⊗ |λ2;m2〉.

2.3. Subduction coefficients

The subduction coefficients (SDCs) are the entries of the matrix transforming between split
and standard bases. Let [λ1] ⊗ [λ2] be a fixed irrep of Sn1 × Sn2 in [λ] ↓ Sn1 × Sn2 and
|λ1, λ2;m1,m2〉η a generic vector of the split basis (where m1 and m2 are standard Young
tableaux with Ferrers diagram λ1 and λ2 respectively, and η is the multiplicity label). We may
expand such vectors in terms of the standard basis vectors |λ;m〉 of [λ]:

|λ1, λ2;m1,m2〉η =
∑
m

|λ;m〉〈λ;m|λ1, λ2;m1,m2〉η. (2.4)

Thus 〈λ;m|λ1, λ2;m1,m2〉η are the SDCs of [λ] ↓ [λ1] × [λ2] with given multiplicity label η.
Because the standard and the split basis vectors are orthogonal, the SDCs satisfy the

following unitary conditions:∑
m

〈λ;m|λ1, λ2;m1,m2〉η〈λ;m|λ1, λ
′
2;m1,m

′
2〉η′ = δλ2λ

′
2
δm2m

′
2
δηη′ (2.5)

∑
λ2m2η

〈λ;m|λ1, λ2;m1,m2〉η〈λ;m′|λ1, λ2;m1,m2〉η = δmm′ . (2.6)

Note that in (2.5) we impose orthonormality between two different copies of multiplicity. It
is not necessary, but it is the most natural choice. On the other hand, it imposes a precise and
explicit form for the SDCs (see section 5).

2.4. Subduction matrix and subduction space

Using the linear equation method proposed by Chen and Pan [16] for Hecke algebras we may
construct a matrix in such a way that the SDCs are the components of the kernel basis vectors.

From (2.3), for l ∈ {1, 2, . . . , n1 − 1}, we get

〈λ;m|gl|λ1, λ2;m1,m2〉 = 〈λ;m|(gl|λ1;m1〉) ⊗ |λ2;m2〉 (2.7)

and, writing |λ1, λ2;m1,m2〉η and gl|λ1;m1〉 in the Sn-basis and Sn1 -basis respectively, (2.7)
becomes∑

p

〈λ;m|gl|λ;p〉〈λ;p|λ1, λ2;m1,m2〉 =
∑

q

〈λ1; q|gl |λ1;m1〉〈λ;m|λ1, λ2; q,m2〉. (2.8)
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In an analogous way, for l ∈ {n1 + 1, n1 + 2, . . . , n − 1}, we get∑
p

〈λ;m|gl|λ;p〉〈λ;p|λ1, λ2;m1,m2〉 =
∑

q

〈λ2; q|gl |λ2;m2〉〈λ;m|λ1, λ2;m1, q〉. (2.9)

Then, once we know the explicit action of the generators of Sn1 × Sn2 on the standard
basis, (2.8) and (2.9) (written for l ∈ {1, . . . , n1 −1, n1 + 1, . . . , n−1} and all standard Young
tableaux m,m1,m2 with Ferrers diagrams λ, λ1 and λ2 respectively) define a linear equation
system of the form:

�(λ; λ1, λ2)χ = 0, (2.10)

where �(λ; λ1, λ2) is the subduction matrix and χ is a vector with components given by the
SDCs of [λ] ↓ [λ1] ⊗ [λ2]. We call the space of the solutions of (2.10), i.e. ker �(λ; λ1, λ2),
subduction space.

2.5. Explicit form for the subduction matrix

Denoting as N,N1 and N2 the dimensions of the irreps [λ], [λ1] and [λ2] respectively, (2.10)
is a linear equation system with NN1N2 unknowns (the SDCs) and (n − 2)NN1N2 equations.
Thus �(λ; λ1, λ2) is a rectangular (n − 2)NN1N2 × NN1N2 matrix with real entries. Using
the explicit action of gi given by (2.2), we see that all equations of (2.10) have the form

α(i)
m,m12

〈λ;m|λ1, λ2;m1,m2〉 − β(i)
m 〈λ; gi(m)|λ1, λ2;m1,m2〉

+ β(i)
m12

〈λ;m|λ1, λ2; gi(m1),m2〉 = 0 if i ∈ {1, . . . , n1 − 1}, (2.11)

α(i)
m,m12

〈λ;m|λ1, λ2;m1,m2〉 − β(i)
m 〈λ; gi(m)|λ1, λ2;m1,m2〉

+ β(i)
m12

〈λ;m|λ1, λ2;m1, gi(m2)〉 = 0 if i ∈ {n1 + 1, . . . , n − 1}, (2.12)

where

α(i)
m,m12

= 1

di(m12)
− 1

di(m)
(2.13)

β(i)
m =

√
1 − 1

d2
i (m)

(2.14)

β(i)
m12

=
√

1 − 1

d2
i (m12)

. (2.15)

Note that, by definition,

di(m12) =
{
di(m1) if i < n1

di(m2) if i > n1
. (2.16)

3. Subduction graph

Given two standard Young tableaux m1 and m2 with the same Ferrers diagram, we say that
they are i-coupled if m1 = m2 or if m1 = gi(m2).

If m12 = (m1,m2) is a pair of standard Young tableaux with k1 and k2 boxes respectively,
where m1 is filled by integers from 1 to k1 and m2 from k1 + 1 to k1 + k2, we define

gi(m12) =
{
(gi(m1),m2) if i < k1

(m1, gi(m2)) if i > k1
(3.1)
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1 •
(4)

• •
(4)

2 •

3 • (4) •

4 • (4) •

(1, 1) (1, 2) (1, 3)

• •

•

•

Figure 1. 4-layer relative to the partitions ([4, 1]; [1], [3, 1]). Nodes have coordinates given by
the lexicographic ordering for Young tableaux with Ferrer diagram [4, 1] and for pairs of Young
tableaux with Ferrer diagram ([1], [3, 1]). Two distinct 4-coupled nodes are joined by an edge.

(note that the action is not defined for i = k1 because gk1 is not a generator of Sk1 ×Sk2 ). Thus,
denoting as m34 another pair (m3,m4), we say that m12 and m34 are i-coupled if m12 = m34

or if gi(m12) = m34.
Let us now consider the three partitions (λ; λ1, λ2) of k, k1 and k2 respectively, with

k1 + k2 = k. We call node each ordered sequence of three standard Young tableaux (m;m1,m2)

with Ferrers diagrams λ, λ1 and λ2 respectively and filled as described in the previous section.
We denote it as 〈m;m12〉.

The set of all nodes of (λ; λ1, λ2) is called subduction grid (or simply grid). In
analogy with the case of standard Young tableaux, we may define the action of gi on a
node n = 〈m;m12〉 as

gi(n) = 〈gi(m); gi(m12)〉. (3.2)

Then we say that two nodes n1 and n2 are i-coupled if n1 = n2 or if n1 = gi(n2). Once i is
fixed, it is easy to see that the i-coupling is an equivalence relation on the grid. Furthermore
there are only four possible coupling configurations between nodes:

(i) one node n = 〈m;m12〉 is called singlet if m = gi(m) and if m12 = gi(m12);
(ii) two distinct i-coupled nodes n = 〈m;m12〉 and n′ = 〈m′;m′

12〉 are called vertical bridge
if m12 = m′

12;
(iii) two distinct i-coupled nodes n = 〈m;m12〉 and n′ = 〈m′;m′

12〉 are called horizontal
bridge if m = m′;

(iv) four distinct nodes n = 〈m;m12〉, n′ = 〈m′;m′
12〉, n′′ = 〈m′′;m′′

12〉 and n′′′ = 〈m′′′;m′′′
12〉

such that n = gi(n
′) and n′′ = gi(n

′′′) are called crossing if m �= m′,m12 �= m′
12,m

′′ �= m′′

and m′′
12 �= m′′′

12.

The partition of the grid related to the i-coupling relation is called i-layer. For each
configuration it can be convenient to choose a representative node which we call pole. Given
a pole p we denote by �(i)(p) the set of all nodes in its coupling configuration. For example,
in figure 1 we show a graphic representation of the 4-layer for ([4, 1]; [1], [3, 1]). The nodes
form a grid and their coordinates are obtained by the ordering number of the relative standard
Young tableau (for example the lexicographic ordering [5]). Because each equivalence class
is composed at most of two distinct nodes, we represent them as joined by an edge with a
label for i. By convention, we choose the node on the top and left of the configuration as pole.
We can see that {〈1; 1, 1〉, 〈2; 1, 2〉, 〈1; 1, 2〉, 〈2; 1, 1〉} is a crossing, {〈1; 1, 3〉, 〈2; 1, 3〉} is a
vertical bridge, {〈3; 1, 1〉, 〈3; 1, 2〉} is an example of horizontal bridge and {〈2; 1, 3〉} a singlet
one.
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1 •
(4)

• (3) •
(4)

2 •
(3)

•
(3)

•

3 • (4)

(2)

•
(2)

•
(2)

4 • (4) • (3) •

(1, 1) (1, 2) (1, 3)

Figure 2. Subduction graph relative to ([4, 1]; [1], [3, 1]). It is obtained by the overlap of the
2-layer, 3-layer and 4-layer. Each i-layer can be distinguished by the label (i) on the edges.

We call subduction graph relative to (λ; λ1, λ2) the overlap of all i-slides (by overlap
between two graphs we mean the graph obtained by the identification of the corresponding
nodes). More simply, two distinct nodes n and n′ of the grid are connected by an edge of the
subduction graph if n = gi(n

′) for some i (note that if n and n′ are i-coupled and j -coupled,
then i = j ). In figure 2 the subduction graph for ([4, 1]; [1], [3, 1]) obtained from the overlap
of the 2-layer, the 3-layer and the 4-layer is shown.

4. Solution space

4.1. Configurations and solutions

The solution of (2.10) can be seen as an intersection of the n−2 subspaces of R
NN1N2 described

by

�(i)(λ; λ1, λ2)χ = 0, (4.1)

with i ∈ {1, . . . , n1 − 1, n1 + 1, . . . , n − 1}. We now construct an explicit solution of (4.1),
for a fixed i, by using the concept of the i-layer.

It is clear that we can associate each SDC of [λ] ↓ [λ1]⊗[λ2] with a node of (λ; λ1, λ2) in a
one-to-one correspondence. Supposed p = 〈m;m12〉 as a fixed pole of a crossing configuration
and �(i)(p) the set of all nodes of such a configuration, the solutions of equations (4.1), written
for each n ∈ �(i)(p), are the kernel vectors of the matrix

�
(i)

m;m12
=




α(i)
m,m12

−β(i)
m β(i)

m12
0

−β
(i)

gi (m) α
(i)

gi (m),m12
0 β(i)

m12

β
(i)

gi (m12)
0 α

(i)

m,gi (m12)
−β(i)

m

0 β
(i)

gi (m12)
−β

(i)

gi (m) α
(i)

gi (m),gi (m12)


 , (4.2)

where the following relations hold:

α(i)
m,m12

= −α
(i)

gi (m),gi (m12)
, α

(i)

gi (m),m12
= −α

(i)

m,gi (m12)
,

(4.3)
β(i)

m = β
(i)

gi (m), β(i)
m12

= β
(i)

gi (m12)

(they directly descend from di(m) = −di(gi(m)) and di(m12) = −di(gi(m12))). If we put

ρ(i)
m =

(
cos θ(i)

m sin θ(i)
m

sin θ(i)
m −cos θ(i)

m

)
, cos θ(i)

m = 1

di(m)
, sin θ(i)

m = β(i)
m , (4.4)



On the linear equation method for the subduction problem in symmetric groups 7663

ρ(i)
m12

=
(

cos θ(i)
m12

sin θ(i)
m12

sin θ(i)
m12

−cos θ(i)
m12

)
, cos θ(i)

m12
= 1

di(m12)
, sin θ(i)

m12
= β(i)

m12
, (4.5)

and we remember (4.3), then (4.2) can be written as

�(i)
m,m12

= 11 ⊗ ρ(i)
m12

− ρ(i)
m ⊗ 11, (4.6)

where 11 denotes the 2 × 2 identity matrix. It is straightforward that the kernel of �(i)
m,m12

is
generated by the vectors e(i)

m ⊗ e(i)
m12

and ē(i)
m ⊗ ē(i)

m12
; here e(i)

m and e(i)
m12

are the eigenvectors of
ρ(i)

m and ρ(i)
m12

respectively with eigenvalue 1, while ē(i)
m and ē(i)

m12
are the corresponding ones

with eigenvalue −1; from (4.4) and (4.5) we get

e(i)
m =


cos θ

(i)
m

2

sin θ
(i)
m

2


 , e(i)

m12
=


cos

θ
(i)
m12
2

sin
θ

(i)
m12
2


 , (4.7)

and

ē(i)
m =


−sin θ

(i)
m

2

cos θ
(i)
m

2


 , ē(i)

m12
=


−sin

θ
(i)
m12
2

cos
θ

(i)
m12
2


 . (4.8)

In the case of vertical bridge configuration, we have β(i)
m12

= 0 in (4.2). Therefore we can
write

�(i)
m,m12

= (
di(m12)11 − ρ(i)

m

) ⊕ (
di(m12)11 − ρ(i)

m

)
. (4.9)

From m12 = gi(m12) it follows that we may only consider one of the two identical copies,
thus

�(i)
m,m12

= di(m12)11 − ρ(i)
m . (4.10)

So, ker �(i)
m,m12

is generated by the eigenvector e(i)
m if di(m12) = 1, by the eigenvector ē(i)

m if
di(m12) = −1.

In an analogous way for a horizontal bridge we have β(i)
m = 0 in (4.2). By the change of

basis 


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (4.11)

and using m = gi(m), we get

�(i)
m,m12

= ρ(i)
m12

− di(m)11. (4.12)

Here ker �(i)
m,m12

is generated by the eigenvector e(i)
m12

if di(m) = 1, by ē(i)
m12

if di(m) = −1.
Finally, the case of singlet configuration is trivial because �(i)

m,m12
is in diagonal form (both

β(i)
m and β(i)

m12
are 0). We can have two possibilities:

�(i)
m,m12

= (0) (4.13)

or

�(i)
m,m12

= (±2). (4.14)

The kernel is the one-dimensional space generated by the vector {1} or it is the trivial space.
All these results are summarized in table 1, where we deal with the various configurations,

the coefficients of the linear subduction equations, their � matrices and the solution for the
kernel vectors. Note that, for the crossing configuration we distinguish the case αm;m12 �= 0
from the case αm;m12 = 0. In the latter case we draw one of the edges with a dashed line.
Furthermore, in the singlet configuration, we mark the trivial kernel solution by a label 0 near
the node.
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Table 1. Fundamental i-coupling configurations, � matrices and solution space bases.

Configuration αm;m12 βm βm12 �m;m12 Basis

Crossing

�= 0 �= 0 �= 0
11 ⊗ ρm12 +

−ρm ⊗ 11

em ⊗ em12

ēm ⊗ ēm12

0 β �= 0 β �= 0
11 ⊗ ρ+

−ρ ⊗ 11

e ⊗ e

ē ⊗ ē

Vertical Bridge

�= 0 �= 0 0
11 − ρm

−11 − ρm

em

ēm

Horizontal Bridge

�= 0 0 �= 0
ρm12 − 11
ρm12 + 11

em12

ēm12

Singlet
• 0 0 0 (0) 1
•0 ±2 0 0 (±2) –

4.2. Poles and their equivalence

We will now prove that �(i)
n , with n ∈ �(i)(p), are equivalent up to change of basis that

exchanges the nodes of the configuration. In this way, only the equations relative to one node
of the configuration (the pole) are needed in the subduction system.

Let us consider the crossing configuration. We first note that

ρ
(i)

gi (m) = ερ(i)
m ε, ρ

(i)

gi (m12)
= ερ(i)

m12
ε, (4.15)

where ε = ( 0
1

1
0

)
. Then, observing that ε2 = 11, for the other three choices of pole we have

�
(i)

gi (m),gi (m12)
= 11 ⊗ ρ

(i)

gi (m12)
− ρ

(i)

gi (m) ⊗ 11 = 11 ⊗ ερ(i)
m12

ε − ερ(i)
m ε ⊗ 11

= (ε ⊗ ε)
(
11 ⊗ ρ(i)

m12
− ρ(i)

m ⊗ 11
)
(ε ⊗ ε) = (ε ⊗ ε)�(i)

m,m12
(ε ⊗ ε), (4.16)

�
(i)

m,gi (m12)
= 11 ⊗ ρ

(i)

gi (m12)
− ρ(i)

m ⊗ 11 = 11 ⊗ ερ(i)
m12

ε − ρ(i)
m ⊗ 11

= (11 ⊗ ε)
(
11 ⊗ ρ(i)

m12
− ρ(i)

m ⊗ 11
)
(11 ⊗ ε) = (11 ⊗ ε)�(i)

m,m12
(11 ⊗ ε), (4.17)

�
(i)

gi (m),m12
= 11 ⊗ ρ(i)

m12
− ρ

(i)

gi (m) ⊗ 11 = 11 ⊗ ρ(i)
m12

− ερ(i)
m ε ⊗ 11

= (ε ⊗ 11)
(
11 ⊗ ρ(i)

m12
− ρ(i)

m ⊗ 11
)
(ε ⊗ 11) = (ε ⊗ 11)�(i)

m,m12
(ε ⊗ 11). (4.18)

In any case we are able to find the suitable change of basis.
Of course, for the bridge configurations the change of pole is equivalent to a change of

basis by ε. The singlet configuration is a trivial case.

4.3. Structure of the subduction space

We can now write the explicit solution space χ(i) for (4.1) as a suitable subspace of R
N ⊗ R

N1N2 .
If we define the vectors (in components)

(
λ(i)

m

)
k

=
{

0 if k is not i-coupled with m(
e(i)
m

)
k

if k is i-coupled with m
(4.19)
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(
λ̄(i)

m

)
k

=
{

0 if k is not i-coupled with m(
ē(i)
m

)
k

if k is i-coupled with m
(4.20)

(δm)k =
{

0 if k �= m

1 if k = m
(4.21)

and the spaces

χ
(i)

m;m12
=




〈
α

(i)

m;m12
δm ⊗ δm12

〉
if di(m) = ±1 and di(m12) = ±1〈

λ(i)
m ⊗ δm12

〉
if di(m) �= ±1 and di(m12) = 1〈

λ̄(i)
m ⊗ δm12

〉
if di(m) �= ±1 and di(m12) = −1〈

δm ⊗ λ(i)
m12

〉
if di(m) = 1 and di(m12) �= ±1〈

δm ⊗ λ̄(i)
m12

〉
if di(m) = −1 and di(m12) �= ±1〈

λ(i)
m ⊗ λ(i)

m12
, λ̄(i)

m ⊗ λ̄(i)
m12

〉
if di(m) �= ±1 and di(m12) �= ±1,

(4.22)

denoting as P (i) the set of the poles for the i-layer and observing that all the relative
configurations form a partition of the grid, we have

χ(i) =
⊕

(m;m12)∈P (i)

χ
(i)

m;m12
. (4.23)

So the general solution of (2.10) is the intersection of n − 2 subspaces, i.e.

χ =
⋂
i∈I

χ(i), (4.24)

with I = {1, . . . , n1 − 1, n1 + 1, . . . , n − 1}.
Now we can outline an algorithm (in pseudo-code) to determine the SDCs for [λ] ↓

[λ1] ⊗ [λ2]:

(i) for i ∈ I :
(a) construct the i-layer;
(b) choose poles;
(c) for each pole (configuration):

construct the space χ(i)
p by (4.22);

(d) construct χ(i) by (4.23);
(ii) determine χ as intersection of all χ(i).

Step (ii) can be performed by using the subduction graph to obtain a minimal number of
equations. In fact, one may associate a suitable equation derived from (4.24) with each edge
(two for the crossing) of the graph (nodes represent the unknown SDCs). Then, starting from
a suitable node in the graph, we can extract such equations by applying a graph searching
algorithm which is able to reach every edge [18]. As regard it is useful to note that equations
associated with closed loops of bridge configurations are always linearly dependent.

5. Orthonormalization and form

The subduction space given by (4.24) has dimension µ equal to the multiplicity of [λ] ↓
[λ1] ⊗ [λ2]. Then SDCs are not univocally determined. A choice of orthonormality between
the different copies of multiplicity imposes a precise form for the multiplicity separations.
Let {χ1, . . . , χµ} be a basis in the subduction space. Orthonormality implies for the scalar
products:

(χη, χη′) = N1N2δηη′ . (5.1)
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If we denote by χ the matrix which has the basis vectors of the subduction space as columns,
we may orthonormalize it by a suitable µ × µ matrix σ , i.e.

χ̃ = χσ. (5.2)

In (5.2) χ̃ is the matrix which has the orthonormalized basis vectors of the subduction space
as columns. Now we can write (5.1) as

σ tτσ = 11, (5.3)

where 11 is the µ × µ identity matrix and τ is the µ × µ positive defined quadratic form given
by

τ = 1

N1N2
χtχ. (5.4)

From (5.3) we can see σ as the Sylvester matrix of τ , i.e. the matrix for the change of basis
that reduces τ in the identity form. We can express σ in terms of the orthonormal matrix Oτ

that diagonalizes τ

σ = OτD
− 1

2
τ O, (5.5)

where D
− 1

2
τ is the diagonal matrix with eigenvalues given by the inverse square root of

the eigenvalues of τ and O a generic orthogonal matrix. Thus, the general form for the
orthonormalized χ is

χ̃ = χOτD
− 1

2
τ O. (5.6)

Equation (5.6) suggests some considerations on the form of the SDCs. First we note that
in the case of multiplicity-free subduction, only one choice of global phase has to be made
(for example the Young–Yamanouchi phase convention [5]). It derives from the trivial form
of the orthogonal 1 × 1 matrices O and Oτ .

In the general case of multiplicity µ > 1, 2µ−1 phases deriving from the Oτ matrix and
1 phase from the matrix O have to be fixed. Therefore we have 2µ−1 + 1 phases to choose.
Furthermore we have other µ(µ−1)

2 degrees of freedom deriving from O. In sum we have a total
of (2µ−1 + 1) + µ(µ−1)

2 choices to make. We agree with [9] for the case of multiplicity 2, in
which we need three phases and one extra parameter to govern the multiplicity separation.

Other aspects have to be considered if we want to find the simplest and most natural form
for these symmetric group transformation coefficients. In [9] the authors expose the following
suitable requirements:

(i) the transformation coefficients should be chosen to be real if possible;
(ii) phases and the multiplicity separation should be chosen to be independent of n;

(iii) the multiplicity separation is to be chosen so that a maximal number of zero coefficients
are obtained;

(iv) it is desirable to have the coefficients written as a single surd of the form a
√

b/c, with
a, b, c integers;

(v) the prime numbers which occur in the surds should be as small as possible.

The first two statements are automatically verified if we assume (5.6). The last three heavily
depend on the form of τ . This can be an interesting mathematical point to study (but its
relevance is relative from a purely physical point of view). We think the form of eigenvalues
and eigenvectors of τ are the only important factors in this regard. Non-normalized SDCs
derived from (4.24) always seem to be in a simple form.
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6. Conclusion

In this paper, we have investigated the linear equation method for symmetric groups, proposed
by Chen et al for the determination of the SDCs as solution of a linear system. We have proven
that such a system, which is constituted by a complicated primal structure of dependent linear
equations, can be simplified by choosing a minimal set of sufficient equations related to the
concept of the subduction graph. Furthermore, the subduction graph provides a very practical
way of choosing such equations and it suggests that subduction coefficients may be seen as a
subspace of R

N ⊗R
N1N2 obtained by the intersection of only n−2 explicit subspaces (each one

in correspondence with an i-layer) instead of the original (n − 2)NN1N2 ones. Consequently
we have a more explicit insight into the structure of the standard to split basis transformation.

We have proposed a general form for the SDCs resulting from the only requirement of
orthonormality and we have seen that the multiplicity separation can be described in terms of
the Sylvester matrix of the positive defined quadratic form τ describing the scalar product in
the subduction space. Then we are able to link the freedom in fixing the multiplicity separation
to the freedom derived from the choice of the Sylvester matrix. The number of phases and free
factors for the general multiplicity separation can be expressed as a function of the multiplicity
µ (i.e. the dimension of the subduction space). It seems to be a crucial question whether one
may fix the Sylvester matrix to obtain all the requirements of simplicity given in the previous
section for the form of each coefficient. We conjecture that such a form only depends on the
form of the eigenvalues and eigenvectors of τ .

We are going to implement a Mathematica code which uses the results in this paper
to easily provide the SDCs relative to high dimension irreps. An interesting example is
[4, 3, 2, 1] ↓ [3, 2, 1] ⊗ [3, 1], because it represents the first case of symmetric groups’
subduction with multiplicity 3 and the corresponding SDCs are still unknown. Other aspects
that could be investigated with interest are the following. First, the possibility of giving an
explicit description of the intersection subspace (4.24) to achieve a comprehensive algebraic
solution of the subduction system. Second, the way to choose the Sylvester matrix to fix the
multiplicity separation. Third, we think that the subduction graph approach can be useful
to other subduction problems such as those related to Brauer algebras and quantum groups,
which are important in many physical models. Moreover the results of this paper can be
directly applied to the subduction problem in Hecke algebras [16].
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